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A Spaceflight Magnetic Bearing Equipped Optical
Chopper With Six-Axis Active Control

K. A. BLUMENSTOCK, K. Y. LEE AND J. P. SCHEPIS

ABSTRACT

This paper describes the development of an ETU (Engineering Test Unit) rotary optical

chopper with magnetic bearings. An ETU is required to be both flight-like, nearly identical
to a flight unit without the need for material certifications, and demonstrate structural and

performance integrity. A prototype breadboard design previously demonstrated the feasibility

of meeting flight performance requirements using magnetic bearings. The chopper
mechanism is a critical component of the High Resolution Dynamics Limb Sounder
(HIRDLS) which will be flown on EOS-CHEM (Earth Observing System-Chemistry).

Particularly noteworthy are the science requirements which demand high precision

positioning and minimal power consumption along with full redundancy of coils and sensors
in a miniature, lightweight package. The magnetic bearings are unique in their pole design to
minimize parasitic losses and utilize collocated optical sensing. The motor is of an unusual

disk-type ironless stator design.
The ETU design has evolved from the breadboard design. A number of improvements

have been incorporated into the ETU design. Active thrust control has been added along with
changes to improve sensor stability, motor efficiency, and touchdown and launch
survivability. It was necessary to do all this while simultaneously reducing the mechanism
volume. Flight-like electronics utilize a DSP (Digital Signal Processor) and contain all
sensor electronics and drivers on a single five inch by nine inch circuit board.

Performance test results are reported including magnetic bearing and motor rotational
losses.

INTRODUCTION

A breadboard rotary optical chopper was designed to meet preliminary performance

requirements for the HIRDLS instrument prior to acquiring knowledge on it's mechanical
interface. This magnetic beating equipped mechanism successfully demonstrated the

feasibility of meeting these requirements. The mechanism specifications were particularly
demanding with regards to volume, mass, and power along with the necessity for full

redundancy of sensors and windings. Approval was given for the development of an ETU
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magnetic bearing optical chopper and its electronics. The ETU mechanism and electronics

are flight-like, designed to be as similar to flight as practical using commercial parts only
when flight qualifiable counterparts are available and without the need for material

certifications. The ETU mechanism and electronics are in the process of being qualified by
means of vibration, thermal/vacuum, and performance testing. They will be integrated into
the ETU instrument and undergo compatibility and performance testing.

ETU MECHANISM REQUIREMENTS

The requirements list (Table I) has been reduced from overall instrument requirements to
applicable mechanism performance and environmental requirements. While the performance
requirements are direct or derived requirements based on the science observation objectives

and instrument design, the environmental requirements reflect a conservative estimate of the
environments for launch, ascent, spacecraft separation from the launch vehicle, orbit
transition and on-orbit operations.

Although some requirements and interfaces were undefined during the breadboard
development, simplified requirements were assumed for progress to be made while there was
full knowledge of the risk of potential redesign of the ETU when those requirements were

fully defined. Other requirements, such as allowable envelope, have changed since the
breadboard design necessitating a significant redesign to shrink mechanical packaging.

ETU DESIGN CHANGES

Significant changes and improvements have been incorporated into the ETU. An active
magnetic thrust bearing and thrust axis sensor have been added. Touchdown bushings have
been replaced by ball bearings. Design changes have been made to the motor to improve
efficiency and reduce its volume. A separate commutation chopper has been eliminated with

commutation now accomplished using the chopper blade. Sensor feedback has been
incorporated to improve long-term stability affected by the radiation and thermal environment

as well as IR diode degradation. The housing mechanical interface has been changed. More
discussion will follow with regards to these changes.

DESCRIPTION

The magnetic bearing optical chopper mechanism spins a six-bladed chopper at 5,000
rpm to modulate incoming light. Refer to the cross section view (Figure 1) and note that it is
a full scale drawing. The chopper blade is clamped to the shaft hub. Housing endcaps are

removable, each of which contain ball bearings used to limit the shaft motion during
inadvertent touchdown while spinning and under launch vibration. The bearings are held in
place by Viton o-rings and elastomer sleeves used to provide damping. Radial motion is

constrained by the front and rear bearings while axial motion is constrained only by the front
bearing.



Table I - PRELIMINARY REQUIREMENTS FOR THE ROTARY CHOPPER

Environmental Conditions

Vacuum Operation in vacuum
Operation in ambient air with degraded performanceallowed

Gravity 1g operation in any orientation
0g operation on orbit

Mechanical loads 21 g (flight level sine burst at 20 Hz)
(launch environment) 26 g (qualification level sine burst)

8 g peak (18-50 Hz sine sweep, 4 octave/minute sweep)
14.1 g-RMS (qualification random)
142.6 dB (flight acoustic, qualification level is 3dB higher)

On-orbit disturbance 0.015g while operating, disturbance frequency is TBD

Thermal 0°C to 40°C (flight level)
- 10°C to 50°C (qualification level)

Instantaneous power loss Must not suffer degradation after instantaneous power loss

Performance

Chopping frequency 500 Hz chopping (6 bladed chopper at 5000 rpm)

Synchronization
Position & Velocity To external clock

Velocity variation
Repeatable 0.001 (0.0005 goal)
Non-repeatable 0.0005 (0.0001 goal)

Runout

Synchronous < 10 m (1 m goal)
Asynchronous <1 m

Axial stability 20 m

Maximum blade lead/lag angle (as synchronized to external clock)
Repeatable 1.5 mrad (0.25 goal)
Non-repeatable 0.5 (0.05 goal)

Blade flutter <0.5 mrad

Maximum angualr blade tilt
Repeatable synchronous 1.5 mrad max (0.1 mrad goal)
Non-repeatable synchronous 0.5 mrad max (0.05 mrad goal)

Vibration exported to base 0.1N max (0.01N goal)

v TBD max .
Anular momentum
Radiation 10K rad total dose

TBD high energy particles
Redundancy All coils, sensors and electronics

Reliability 5 year operational life on orbit

Power

control electronics 10W max

Chopper assembly <500mW max (< 100mW goal) dissipated in radial and thrust
bearings, sensors and motor

Dissipated in shaft 50mW (10mW goal)

Max fluctuation in shaft 10mW (lmW goal)
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Figure 1 - HIRDLS ETU MAGNETIC BEARING CHOPPER

The following components are contained inside the housing: a front radial magnetic
bearing module (which includes an integrated radial position sensor), a dual stator motor

assembly, a rear radial magnetic bearing module, a thrust axis sensor, and a thrust magnetic
bearing. Ribbon cables are connected at the outer diameters of the components and are
recessed into grooves in the housing inner diameter. One hundred and six conductors exit

behind the chopper blade and from the rear end cap. Each radial magnetic bearing module is
composed of two laminated stators each with a non-laminated flux ring around its outer

diameter, an optical sensor disk between the stators contained by the flux rings, and four
samarium-cobalt magnets feeding bias flux to the flux rings. The magnetic bearing rotors,
mounted on the rotating shaft, are also laminated. Two disk shaped motor stators are
clamped by aluminum sleeves in the housing inner diameter. The motor rotor consists of

two 12-pole samarium-cobalt ring magnets each with a Hiperco back-iron together which

pass magnetic flux through the two stators. These ring magnet assemblies are encapsulated
into a two section aluminum housing all of which rotates and is keyed with the mechanism
shaft. The thrust disk is located near the end of the shaft within the thrust stator. A 4-40

screw and belleville washer at the end of the shaft clamps all the shaft components together.
Likewise, both endcaps clamp all the appropriate housing components together. With the

endcaps removed, the internal components can be slid out of the front of the housing as a
unit.



The magnetic bearings provide for two axes of control near each end of the shaft. The
fifth axis, the thrust axis, is actively controlled by the magnetic thrust bearing. The sixth axis,

the rotational axis is controlled by means of a PLL (Phase-Locked Loop) using commutation
signals for feedback. Commutation sensors located on the chopper shroud sense chopper
blade transitions. The mechanism mounts to the instrument by three fasteners to a blade

shroud which is kinematically supported.

MAGNETIC BEARINGS

The homopolar radial magnetic bearings are virtually unchanged as compared with the
breadboard unit. Loss measurements prove the design to have outstanding rotational
efficiency. This can be attributed to careful attention to the design to prevent flux variations

around the rotors. Magnetostatic analysis called for a pole-to-pole gap of 0.25 mm (0.010 in)
for this design. Printed circuit boards now serve as bearing module wire terminators and
touters and significantly reduce bearing assembly time while improving system reliability.

Active thrust axis control is accomplished using the thrust magnetic bearing. The

breadboard design lacked axial stiffness and could only operate in orientations with the shaft
horizontal. Dual windings in the thrust bearing are used for primary and redundant operation.

Two axially magnetized ring magnets provide the bias flux.

POSITION SENSORS

IR (infrared) diode/phototransistor pairs are used to sense x and y axes for each of the
radial magnetic bearings. Both primary and redundant IR diode/phototransistor pairs are
installed in a sensor housing which is located between two eight-pole stators forming a

magnetic bearing module. Position detection is accomplished utilizing the cylindrical surface
of each sensor sleeve to vary IR light blockage to the position phototransistors. A similar
arrangement is used for thrust axis sensing. In this case, the flat surface of a thrust sensor

disk is used to vary IR light blockage.
Feedback phototransistors, which were not part of the breadboard design, have been

incorporated to maintain constant intensity of the IR diodes. The radial sensor housings make

use of small mirrored surfaces machined on 0.078 inch pins to reflect some waste IR light to
their respective feedback phototransistors. The thrust sensor geometry accomplishes this
without the use of mirrored surfaces. This feedback scheme minimizes sensor drift caused by

temperature variation and IR diode degradation due to aging and radiation exposure.

MOTOR

The motor is an ironless-stator brushless design similar to the breadboard motor. The

stator windings are manufactured as a printed circuit board. Modifications to the breadboard

design were made to improve the motor efficiency. The operational torque to drive the
chopper mechanism is only a function of eddy-current losses when operated in a vacuum.
Testing of the breadboard revealed that eddy-current losses were much more dominant in the



motor than in than the magnetic bearings. For highest efficiency when operating in a
vacuum, motor and magnetic bearing losses should be equal. Optimization of the design to

minimize motor power consumption actually called for reducing the copper volume of the
motor stators. This allowed combining both stators within a single rotor. Further eddy-
current loss reduction has been accomplished by reducing the trace width from 0.008 inches
to approximately 0.003 inches. Also, concentrating the radial traces to the center of each pole

location has further improved efficiency by improving commutation accuracy. The number
of poles have been reduced from sixteen to twelve in order to commutate off of the main
chopper blade which has six blades. A separate commutation chopper has been eliminated
thus saving precious volume.

These modifications have reduced motor power consumption in a vacuum by a factor of
three with little effect upon motor power consumption during ambient pressure operation.
Motor volume has been reduced by a factor of two.

TOUCHDOWN BEARINGS/LAUNCH SURVIVAL

The breadboard unit used Vespel bushings to protect the mechanism from damage in the
event of a touchdown or when subjected to launch vibration. This configuration does not

allow for a graceful touchdown due to inherent high friction. Also of concern is the
generation of debris during touchdown or launch. The ETU uses touchdown ball bearings at

each end of the housing. The forward bearing constrains radial and axial motion of the shaft
while the aft bearing constrains only radial motion. Both bearings are held in place at each
endcap through pre-compressed Viton o-rings and elastomer sleeves (uralane 5753) which

provide damping. Total radial motion is constrained to + 0.0035 inches and axial motion is
constrained to + 0,0065 inches.

ELECTRONICS AND CONTROL

Figure 2 is the functional block diagram of the electronics for the chopper control. There
are five controllers for the magnetic bearing control and one controller for the motor velocity.

The entire 6-axis controllers are being built on a 5" x 9" board using all military parts. The
heart of the controllers is the SMJ320HFHM40 Digital Signal Processor (DSP) whose

function is to handle all command and telemetry interfaces, compensation algorithms for the
6 controllers, and CPU health and safety. Also, the DSP will handle the levitation/spin
sequence, touchdown sequence, and sensor calibration. The A/D and D/A conversions,
multiplex channel selection, and CPU interrupt for I/O read/write are handled by a Field

Programmable Gate Array (FPGA). The throughput rate including 16 analog I/O channel
sampling and CPU computation time is expected to be 20 KHz.

The motor controller employs a Phase-Locked Loop (PLL) scheme with a lock frequency
of 500 Hz. The closed loop bandwidth is about 6 Hz. Figure 3 shows the measured closed

loop frequency response of the motor controller. Both the Pulse-Width Modulated (PWM)
and linear drivers have been built and tested for the motor operation. The PWM motor
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Figure 2 - FUNCTIONAL BLOCK DIAGRAM

drivers minimize power consumption, especially for the operation in air, however, they

exhibit EMI problem and possibility of exciting the structural modes. The linear drivers are

the push-pull type and therefore the high motor drive currents are returned to the power

supply, not to the ground. This will keep the ground relatively quiet. Also, the absence of

high frequency pulsing reduces the Electro-Magnetic Interference (EMI) concern. For these

reasons, linear drivers were chosen for the final design. The phase detector, commutation

logic, and all other necessary logic circuits necessary for the motor control are generated
inside the FPGA.

The magnetic bearings are controlled using PID technique. The drivers for the magnetic

bearings are also linear for the same reason as for the motor drivers. The measured closed

10op bandwidth for each controller is between 100 and 200 Hz range. Achieving high closed

loop bandwidth is crucial for high tolerance toward external disturbances such as the mass

imbalance of the spinning components and disturbances from the spacecraft. Also, fast step

and settle response is important for levitation to be achieved due to non-linearity caused by

the bias flux. The frequency response of one of the magnetic bearing control loops is shown

in Figure 4. The plot shows the position deviation of the shaft from its nominal position due



to external disturbance applied at the housing mount. An important requirement is that the

mechanism must meet its performance criteria while subjected to a 0.15g input disturbance.
The projected disturbance rejection profile of the magnetic bearing system is depicted in
Figure 5. Based on the projection, even at the most sensitive frequency (i.e., 50 - 70 Hz) the
magnetic bearing controllers should withstand the required external disturbance level.
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ROTATIONAL LOSSES

Predictions for rotational losses in the motor and magnetic bearings were made based

upon measurements taken using the breadboard unit. Since the motor load consists of only
magnetic bearing rotational losses, motor rotational losses, and aerodynamic losses,

determining these losses is crucial for sizing the motor for maximum efficiency. Rotational
losses consist primarily of eddy-current and hysteresis losses in magnetic bearing rotors, and

only eddy-current losses in motor stators. Motor current measurements were made with a

single stator energized. This measurement was repeated with one stator physica!ly removed.
Since motor parameters were known and verified with back-emf measurements, the eddy-
current losses of the single removed stator was calculable based upon the change in current.
These measurements were performed at 500 rpm with the chopper blade removed so that



aerodynamic losses would be negligible• With the eddy-current losses of each stator known
and aerodynamic losses considered to be zero, the remaining load to the motor is the

magnetic bearing rotational loss. Since we were interested in losses at 5000 rpm and eddy-
current losses are a function of velocity squared, a factor of 100 was included. Table II
summarizes the rotational losses.

Table II - MOTOR STATOR AND MAGNETIC BEARING ROTATIONAL LOSSES AT 5000 RPM

BREADBOARD MOTOR STATOR 238 mW
ETU MOTOR STATOR (PREDICTED) 44 mW
MAGNETIC BEARING 51 mW



PERFORMANCE AND ENVIRONMENTAL VERIFICATION

A critical process in the engineering efforts that comprised the design of the mechanism
and electronics was to establish baseline performance and environmental requirements and
plan for verification of those requirements. Standard environmental tests for space
applications including vibration, thermal/vacuum, EMC (electromagnetic compatibility) and

AC/DC magnetic field strength will be performed. Of particular concern are potential damage
to the mechanism due to touchdown while spinning and overall mechanism life, so specific
tests are planned in these two areas as well.

Mechanism stand-alone performance and environmental verification tests are described

in Table III, below. Future mechanical tests and their associated level of assembly in planned
chronological order are described in Table IV.

Table III- Currently Planned Mechanism Tests

Test Configuration
Vacuum performance test Mechanism at sl_eed(5000 RPM)

Radial and axial test directions
Qualification random vibration test 20-2000 Hz

14.1 g RMS
Radial and axial test directions
Mechanism power off

Touchdown test Mechanism power on and at speed
Radial and axial tests

Vacuum disturbance rejection test 0.015g disturbance input, 5-50Hz sweep
Mechanism at speed
Radial and axial tests

Thermal/vacuum performance test -10°C to +50°C
4 hours soaks at temperature, 4 hour
transitions
8 temperature cycles
Mechanism at speed

Magnetic field TBD
Mechanism powered off and at speed

EMC Mechanism and electronics
Mechanism at speed
TBD Levels

Life test Mechanism at speed in vacuum and
electronics
5 years continuous operation

Table IV- Future MechanisrL Tests

Test Parameters, Level of Assembly for Test ,,
Sine burst test 269 each axis Instrument level1
Sine sweep test 8g peak each axis Instrument level_

18-50 Hz at 4
octaves/minute

Acoustic 142.6 dB Spacecraft levelz
Pyrotechnic shock TBD Spacecraft levelz

Note: 1. ETU tests at the instrument level will be performed to qualification loads which
are 25% greater than flight loads.
2. Spacecraft level tests are performed with the flight mechanism to flight loads.



CONCLUSION

A flight-like ETU magnetic bearing chopper and associated electronics have been
designed and optimized and are in the process of being qualified. It is expected that both
qualification and performance criteria will be met.
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Figure 6 - HIRDLS ETU MAGNETIC BEARING CHOPPER
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